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Abstract.  After describing classical Borromean links and their properties, Borromean
property and Brunnean property are extended to n-component links (n > 3). Different
known infinite classes of three-component Borromean links are described, as well as two
new infinite classes of “prismatic” Borromean n-component links.

“No two elements interlock, but all three do interlock”. A three-component link with
that property is called “Borromean” after the Borromeos, an Italian family from the
Renaissance that used them as their family crest symbolizing the value of collaboration and
unity. B. Lindström and H. O. Zetterström (LINDSTRÖM and ZETTERSTRÖM, 1991), proved
that “Borromean circles are impossible”: three flat circles cannot construct them, but by
triangles they can. The Australian sculptor J. Robinson assembled three flat hollow
triangles to form a structure (called Intuition), topologically equivalent to Borromean
rings. Their cardboard model collapses under its own weight, to form a planar pattern. P.
Cromwel recognized Borromean triangles in a picture-stone from Gotland (CROMWEL,
1995). This and other symmetrical combinations of three and four hollow triangles were
considered by H. S. M. Coxeter (COXETER, 1994). In geometry, Borromean rings appear
as the regular octahedron {3,4} (JABLAN, 1998), in Venn diagrams (RUSKEY, 1999), in
DNA (SEEMAN, 1999), and in other various areas (CROMWEL et al., 1998) (Fig. 1).

In the knot theory Borromean rings are the foremost examples having with two
remarkable properties: three mutually disjoint simple closed curves form a link, yet no two
curves are linked, and if any one curve is cut, the other two are free to separate. In the case
of 3-component links those two properties are inseparable: one follows from the other. In
the case of n-component links (n > 3), n-Borromean links could be defined as n-component
nontrivial links such that any two components form a trivial link. Among them, those with
at least one nontrivial sublink, for which we will keep the name “Borromean links”, will
be distinguished from the Brunnian links in which every sublink is trivial (LIANG and
MISLOW, 1994).

It seams surprising that besides the Borromean rings, represented by the link 62
3 in

Rolfsen’s notation, no other link with the properties mentioned above can be found in link
tables (ROLFSEN, 1990; ADAMS, 1994). The reason for this is very simple: all existing knot
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tables contain just the links with at the most 9 crossings. In fact, an infinite number of
Borromean or Brunnian links exist, and they can be derived as infinite series.

The first such series of 3-component links, beginning with the Borromean rings, was
discovered by P. G. Tait (TAIT, 1876–77). Their geometrical source is easy to recognize:
the limit case for n = 1 yields the regular octahedron {3,4}, while the series of (3n)-gonal
antiprisms are obtained for n > 1. Alternating their corresponding projections (well known
in geometry as Schlegel diagrams) provides the series of achiral 3-Borromean links (Fig.
2).

If it is not necessary that every two components in a projection do intersect, an infinite
number of “fractal” Borromean links derive from each n-Borromean link in a very simple
way. Indeed, it is enough to surround in a projection an even number of the appropriately
chosen crossing points of any two components by circles (Fig. 3). Therefore, our
considerations will be restricted to n-Borromean links without nonintersecting components
in a projection.

Fig. 1.  Detail from a picture-stone on Gotland, hollow triangles, Borromean rings and regular octahedron.

Fig. 2.  Tait series.
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The next infinite series of 3-Borromean links, beginning again with the Borromean
rings, follow from a circular 2-component trivial links by introducing the third component:
a circle intersecting the projection in opposite points (Fig. 4). In a similar way, from the
family of 2-component trivial links we derive the other infinite series of 3-component
Borromean links (Fig. 5). From such links with a self-crossing projection of a component,
new infinite series of Borromean likns with twists are obtained. In a self-crossing point of
the oriented component projection an n-twist is introduced, its orientation being used only
for choosing the appropriate position of the twist (Fig. 6).

Note that the first series of Borromean links with twists (Fig. 4) could be also derived
from Borromean rings by introducing identical twists in the crossing-points of two
different components. Therefore, we could first get different infinite series of n-Borromean

Fig. 4.  Borromean links derived from circular links.Fig. 3.  Fractal Borromean links.

Fig. 5.  Another series of Borromean links derived from the same source.
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Fig. 7.  Borromean links derived from a tessellation of a prism.

links without twists, and then introduce twists trying to preserve the Borromean property.
Tessellations of (2n + 1)-gonal prism, where in every ring of the projection we draw

“left” or “right” diagonals (Fig. 7), yield the next infinite series. The notation of the
tessellations and links can be done using the symbols (2n + 1, k), where all decompositions

Fig. 6.  Introduction of a twist.
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of the number k = (2n + 1)l-2, are denoted by k, such that every decomposition is identified
with its obverse. From each such tessellation with k rings we obtain 2k–2 + 2[k/2]–1 different
(2n + 1)-Borromean links without the Brunnian property. In those links, all components are
equivalent, i.e. there is an isotopy of 3-space that carries the link to itself and any given
component onto any other. Then the digons could be introduced again, in the same way as
before. The same method, using “centered” rectangular tessellations, provides another
series of (2n + 1)-Borromean links (Fig. 8).

Next, we could try to construct Borromean links with an even number of components
and without the Brunnian property. C. Liang and K. Mislow (LIANG and MISLOW, 1994)
proposed two methods for the construction of n-Borromean links with at least one
nontrivial sublink, both resulting in n-Borromean links with some nonintersecting component
projections (n > 3). In the first method, involving duplication of one or more rings, the
duplicate rings are interchangeable by continuous deformation. For example, by duplicating
one ring in Borromean rings, we obtain 4-Borromean link, and continuing in the same

Fig. 8.  Borromean links derived from a centered tessellation of a prism.
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manner, n-Borromean links (n = 5, 6, 7, ...) (Fig. 9). Different links of that infinite series
follow from other choices of rings that will be duplicated. Another method is similar to the
one for producing “fractal” Borromean rings: in the trivial link, two crossing points in a
projection are surrounded by nonintersecting circles (Fig. 10). Continuing in this way,
Borromean links with an even number of components are obtained. Finaly, only one open
question remains: are they exist (2n)-Borromean links in which every pair of projections
of components has a crossing in all projections of the link, and moreover, where all
components are equivalent.

The n-component links (n > 3) without nontrivial sublinks were described by H. Brunn
(BRUNN, 1892). Here they are presented by a series of illustrations with some artistic
qualities (SCHAREIN, 1998) (Fig. 11).

At the end, let us consider different plane arrangements of circles, where every
intersection or touching point is common for exactly two circles (Fig. 12). Any such
arrangement is four-valent, and by alternating it can be transformed into a projection of
some knot or link. Different arrangements of circles may result in the isomorphic knot or
link projections. For example, one arrangement of three circles, and the other of four circles
may result in the same projection of two-component link 51

2. Therefore, for every circle
arrangement we need to consider the number of circles from which it consists and the knot
or link projection obtained.

Fig. 9.  Borromean links derived by ring duplication.

Fig.10.  The other method of construction.
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Fig.12.  Circle arrangements, knots and links derived from them.

Fig.11.  Brunnean links.
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Some interesting possibilities, similar to certain “wasan”-patterns (NAGY, 1995)
arrise in the case of inscribed cicles. For example, except the “classical” Borromean rings
formed by three circles (known also as one of old Japanese family crests), Borromean rings
can be derived from the following four-circle arrangement (Fig. 13).

In the same way, from the Mon pattern (family crest) “Nine Stars” (HUSIMI, 1996) we
may obtain the 16-crossing knot corresponding to the 8-antiprismatic basic polyhedron.

In the other paper by Prof. K. Husimi (HUSIMI, 1994) we can find another interesting
application of Borromean links: let us put on the tetrahedron surface three rubber rings all
through the centers of the edges of the tetrahedron, alternating and forming Borromean
rings. The string pattern printed that way on the plane by rolling tetrahedron will be
Kagome—woven bamboo pattern. The same traditional woven patterns are used by P.
Gerdes for modelling the structure of Fullerenes (GERDES, 1998; JABLAN, 1999).

This work was supported by the Research Support Scheme of the OSI/HESP, grant No. 85/
1997.
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